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Introduction 

A mobile sensor denotes a mobile robot system which is equipped with a sensor to gather information of 

the environment. A representative example of the mobile sensor is an unmanned aircraft with a sensor of 

any kind to track designated targets. The use of a large number of sensors has become common in data 

fusion applications to obtain synergistic observation effects. As the amount of data to be processed has 

increased, emerging interest in research into automatic management of a set of sensors is motivated. 

Generally, multisensor management algorithm is about how to make real-time decisions for selection of a 

sensor set and configuration of sensor deployment. The criteria for such decisions are defined on the basis of 

the accuracy of parameter estimation. Information theory provides a tool of achieving this aim. Information 

measures such as Fisher information matrix (FIM) and entropic information have been employed to quantify 

performance of the sensor system. 

The purpose of the path planning for dispatch of a mobile sensor is to obtain maximum information of the 

target state where the mobile sensor can operate sensing task in a circular region, called an operational area, 

as depicted in Fig. 1. Note that the sensor deployment location is different from the operational area. In 

making plans for the sensor dispatch, since there is no measurement available right after the dispatch, the 

cost formulation has no term dependent on sensor state at that time. It is hard to apply the receding horizon 

and gradient-based methods to this problem setup since the state-dependent cost resides at a future time. 

Even if the optimal solution is found, the optimal trajectory starting after large planning time may be no 

longer optimal in the perspective of information. It is because the information of the environment is being 

dissipated during the planning time. Consuming much time in path planning after the real-time decision to 

dispatch is not preferable in practice. 

 

 
Fig. 1. Operational area and sensor dispatch location. 
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Optimal path planning provides a sensor trajectory to obtain maximum information reward. However, 

solving a nonlinear optimal control problem requires a substantial amount of computational effort. The 

problem resides in that the sensor management system cannot respond properly to the dynamic environment 

if the dispatch of the sensor is delayed due to the computation for path planning. The time evolution of the 

FIM is expressed as below. 

 

𝐽(̇𝑡) = −𝐽(𝑡)𝐹(𝑡) − 𝐹𝑇(𝑡)𝐽(𝑡) − 𝐽(𝑡)𝑄(𝑡)𝐽(𝑡)⏟                        
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+ 𝕀(𝑡)𝐻𝑇(𝑡)𝑅−1(𝑡)𝐻(𝑡)⏟              
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛

 

 

where every matrix in the above equation is positive semi-definite. Although the formulation for the cost 

function assumed that the initial time 𝑡 = 0 is when the sensor is dispatched, the information dissipates over 

the planning time before the dispatch. Consequently, the optimal solution will give the path for the mobile 

sensor to obtain maximum information gain based on the dissipated initial information. If the planning 

procedure takes 𝑡𝑝 > 0 ant the final time is 𝑡𝑓, the actual performance of the sensing operation is 
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Given a real-time decision to dispatch a new sensor, consuming much time in planning is not preferable in 

practice. For simplicity, the following discussions will also define the dispatch time, 𝑡 = 0, as the initial 

time for path planning.  

    At the instance of path planning, i.e. 𝑡 = −𝑡𝑝, only the system model and the target state at that time, 

𝑋𝑇(−𝑡𝑝) are available to path planning algorithms. Therefore, path planning should be done based on the 

predicted target state for 𝑡 ∈ [𝑡𝑠, 𝑡𝑓], not the true state, evaluated at the planning time. Fig. 2 depicts an 

exemplary time history of uncertainty of the target state which a path planning algorithm refers to. A path 

determined by an optimal planning algorithm with erroneous cost evaluation may not be the best solution. 

 

 

 
Fig. 2. Time history of target state uncertainty. Dashed line denotes uncertainty of target state predicted at 

the planning time. Solid line denotes uncertainty of target state estimated by a filtering algorithm. 

 

 

 

 

 

 

Proposed Path Planning Strategy 
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We divided the problem into two phases in order to devise a computationally efficient path planning 

strategy. Determining the path to the boundary of the operational area belongs to the first phase, given a 

control law during the operation in the area as the second phase. 

The discussion of the proposed method will start by introducing a gradient-descent steering law which is 

often employed as a suboptimal solution. The gradient of the rate of the information measure is obtained as 

 

∇ℐ̇(𝑡) = [
𝜕ℐ̇(𝑡)

𝜕𝑥
  
𝜕ℐ̇(𝑡)

𝜕𝑦
] 

 

Note that the steering law based on the information potential field depends solely on the spatial coordinates 

of the sensor. Consequently, the time history of the sensor path during  𝑡 ∈ [𝑡𝑠, 𝑡𝑓] is determined by the 

starting position of the sensor on the boundary. 
Given that the path constructed by the gradient-descent steering law depends on the starting position on 

the boundary of 𝒞, the path planning problem becomes the problem of finding the optimal starting position. 

In order to further save the planning time, the optimization of the starting position is designed to be executed 

online. The starting position optimization is based on gradient descent method for empirical cost 

optimization. The gradient descent is popular for its efficiency in large scale convex optimization and often 

utilized in online learning. 

However, the optimization process still requires computation for executing the gradient descent method 

before dispatch. The following discussion is about how to further reduce the planning time. The main idea 

herein is that the optimization can be done online on the way to a properly chosen waypoint. Suppose 
[𝜃𝐿, 𝜃𝑈] ⊂ 𝒞𝑏 is a set of points at which the mobile sensor can arrive in 𝑡𝑠 after dispatch. If a smaller set 
[𝜃𝑙 , 𝜃𝑢] ⊂ [𝜃𝐿 , 𝜃𝑈] is given, there exists a point outside 𝒞, closer to 𝒞𝑏 than 𝑋0, from which the mobile 

sensor can arrive at any of 𝜃 ∈ [𝜃𝑙 , 𝜃𝑢] in the remaining time. We call the point a waypoint and its position is 

denoted as 𝑋𝑤. After arriving at 𝑋𝑤, the sensor is guided to the optimum 𝜃∗. The waypoint is supposed to 

have shortest path to the boundary of the operational area to maximize the optimization time. In this paper, 

Dubins’ theory is incorporated to properly choose the waypoint and estimate the optimization time. 

Fig. 3 presents a graphical representation of the proposed algorithm. 

 

 
Fig. 3. Graphical representation of the proposed algorithm. 

 

Simulation Result 
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Suppose a multisensor system is executing a multitarget tracking mission in an operational area. The 

scenario starts with new 3 targets being detected by some sensor in operation. The sensor manager makes a 

decision to dispatch a new mobile sensor to track the targets. Specifically, an unmanned aircraft equipped 

with a sensor system that provides angles and range measurements is supposed to be dispatched. 

The solution to the optimal control problem with initial target state uncertainty is denoted as ‘optimal’ 

while the optimal solution based on the true target trajectory is denoted as ‘reference’. The solution of the 

proposed algorithm is denoted as ‘proposed’. Nonlinear programming (NLP) solver SNOPT of GPOPS-II is 

used to solve the optimal control problem where the problem is constructed in two phases. The optimized 

solutions are obtained within two minutes and satisfy optimality criteria with tolerance of 10−2. On the 

other hand, the proposed algorithm takes less than a second for planning before dispatch. 

Assuming solving the optimal control problem requires 10 seconds, the time history of the information 

indices for a scenario is obtained as Fig. 4. Although the initial target state uncertainty is set equivalent, the 

information of the targets dissipates during the planning time for the reference and optimal solution. As a 

result, the proposed method outperforms the optimal solution. We observe that the final cost of the reference 

solution is degraded as well due to the information dissipation. By the definition of the information index, 

the lower bound of the volume of the target state uncertainty can be obtained by taking exponential to the 

information index. If the difference of the information indices between two trajectories is 1, it means the 

ratio of volume of the target state uncertainty ellipsoids obtained by optimal filtering is 𝑒 = 2.7183.  

 

 
Fig. 4. Time history of information indices. 

 

 

Conclusion 
This paper addressed a real-time path planning algorithm for dispatch of a mobile sensor to an operational 

area. After presenting the proposed method to cope with the problems caused by large planning time and 

cost uncertainty, we gave numerical simulation results to verify performance of the proposed method 

compared to that of optimal solutions. Performance degradation was observed in the optimal solution with 

erroneous initial target state and large planning time. Requiring less computational effort, the proposed 

method outperformed the optimal solution. 

 


