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장애물 환경에서 다수의 무인 비행체의 교착 상태를 방지하는 분산 경로 계획 

알고리즘 

Decentralized Deadlock-free Trajectory Planning for Quadrotor Swarm  
in Obstacle-rich Environments 

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 

초록 

다개체 경로 계획은 다수의 무인 비행체를 활용하는 구조, 감시, 운송 등의 미션을 수행하는데 필수적이다. 

하지만 기존의 경로 계획 알고리즘은 좁은 환경에서 로봇 간의 교착 상태가 발생할 수 있다는 문제가 있다. 본 

논문은 이 문제를 해결하기 위해 임의의 환경에서도 교착 상태가 없음을 보장하는 분산형 다개체 경로 계획 

알고리즘을 제시한다. 제안하는 알고리즘은 그리드 기반 경로 계획 기법을 활용하여 로봇이 교착 상태 없이 지정된 

경유지로 수렴하도록 설계되었다. 또한 선형 안전 복도를 채택하여 충돌 회피를 보장하며 경로 최적화 문제의 해가 

항상 존재한다. 시뮬레이션 및 실험을 통해 제안하는 알고리즘이 통신 범위에 관계없이 교착 상태를 일으키지 

않으며 기존 알고리즘보다 더 나은 성능을 보여준다는 것을 확인하였다. 

 

Key Words : Path Planning for Multiple Mobile Robots or Agents, Distributed Robot Systems, 

Collision Avoidance 

 

Introduction 

 

Recently, unmanned aerial vehicles (drones, UAMs) have received much attention due to their 

various applications like search and rescue, surveillance, and transportation. To utilize them efficiently 

and safely, we require multi-agent trajectory planning (MATP) algorithm that guarantees safety and 

high scalability in obstacle-rich environments. even state-of-the-art MATP algorithms have the 

limitation that they do not consider obstacles (1~3) or have a risk to cause deadlock in an obstacle-

rich environment (4~6). 

In this paper, we present a decentralized multi-agent trajectory planning (MATP) algorithm that 

guarantees to generate a safe, deadlock-free trajectory in a cluttered environment. The proposed 

method solves a deadlock through the following three steps. First, we compute the waypoint of each 

agent using a decentralized grid-based multi-agent path planning (MAPP) algorithm. Then, we 

optimize a subgoal of each agent considering the collision constraints and communication range so 

that the agent can reach the waypoint without deadlock. Finally, we conduct trajectory optimization 

to make the agent converge to the waypoint. As a result, the proposed algorithm allows the agent to 

reach the goal by following the waypoints from the grid-based MAPP. We utilize a linear safe corridor 

(LSC) (7) to guarantee the feasibility of the optimization problem and collision avoidance. Moreover, 

the proposed algorithm can be employed to the robots with the limited communication range as long 

as they can configure an ad-hoc network. To the best of our knowledge, this is the first decentralized 

MATP algorithm that guarantees the feasibility of the optimization problem, collision avoidance, and 

deadlock-free in a dense maze-like environment. We conducted a hardware demonstration to verify 

the operability of the proposed algorithm, as shown in Fig. 1. 
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Related work 

MATP algorithms can be divided into two approaches: centralized and decentralized methods. Several 

works (8~9) present centralized planning algorithms that utilize a grid-based multi-agent path planning 

(MAPP) algorithm such as ECBS (10) to plan an initial trajectory and optimize it. This approach guarantees 

deadlock-free in a maze-like environment, but it is not scalable to the number of agents. On the other 

hand, decentralized methods (2,4,5,11) show higher scalability than centralized ones, but they often suffer 

deadlock in a narrow corridor. 

For deadlock resolution, many decentralized algorithms adopt the right-hand rule (1,6,12~14), which 

moves the goal point to the right side after the deadlock is detected. This approach works well in an 

obstacle-free environment, but there is a risk of another deadlock even after changing the goal point. 

Another deadlock resolution method is to replan each robot's trajectory sequentially. In (15), local 

coordinator asks neighboring agents to plan different trajectory until the deadlock is resolved. The 

authors of (16) introduce a token-based cooperative strategy, that determines which robots to yield the 

path by bidding. However, under these methods, there are cases where deadlock cannot be resolved 

by replanning an alternative trajectory of individual agents. The authors of (17) introduce a centralized 

high-level coordinator for deadlock resolution. This method is suitable for deadlock resolution in a 

cluttered environment, but all agents must be connected to the centralized coordinator during the entire 

mission. 

Several works guarantee deadlock-free in obstacle-free or sparse environments. The authors of (3) 

introduce a warning band to prevent the agents from clumping together. In (18), an artificial potential 

field (APF) is extended to solve deadlock. The authors of (19) conduct deadlock analysis and resolution 

for 2 to 3 agents. However, there is a limitation that these methods cannot solve deadlock in a cluttered 

environment such as a maze. In (20~21), the grid-based MAPP is utilized to solve deadlock, similar to the 

proposed method. The authors of (20) adopt a mode-switching strategy, which converts the planner 

mode to follow the waypoint from MAPP when the deadlock is detected. The authors of (21) utilize the 

discrete path from MAPP as an initial trajectory. However, these methods do not provide a theoretical 

guarantee for deadlock resolution. Compared to the previous work (7), the proposed algorithm does not 

require a fully connected network for collision avoidance, and it guarantees deadlock-free for dense 

maze-like environments. 

 

Problem statement 

We suppose that 𝑁  agents with radius 𝑟  are deployed in a 2-dimensional space with static 

Fig. 1. Experiment with 10 quadrotors in a dense maze. 
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obstacles. Our goal is to plan a safe and deadlock-free trajectory for the agents under a limited 

communication range. The start and goal points of the agent 𝑖 are 𝐬௜ and 𝐠ௗ௘௦
௜ , respectively. We denote 

a set that includes all agents as ℐ and a set consisting of agent 𝑖 and the agents that can communicate 

with the agent 𝑖 as a connected group 𝒩௜. 

 

Assumption 

In this work, we assume that the position of the static obstacles is given as prior knowledge. All agents 

share the same grid space 𝐺 = (𝑉, 𝐸), where the grid size 𝑑 is larger than 2√2𝑟. The start and desired 

goal points of all agents are located at the vertex of the grid space, and inter-agent collision do not 

occur at the start point. All agents start the mission at the same time. The agents 𝑖 and 𝑗 can share 

the information without a communication loss or delay at time 𝑡 if the agents satisfy the following:  

∥∥𝐩௜(𝑡) − 𝐩௝(𝑡)∥∥ஶ
≤ 𝑟௖ 

where 𝐩𝒊(𝑡) is the position of the agent 𝑖, |⋅|ஶ is the L-infinity norm, and 𝑟௖  >  2𝑑 is the communication 

range. All agents can configure an ad-hoc network to relay information between the agents within the 

communication range. 

 

Agent Description 

We represent the agent's trajectory to the 𝑀-segment piecewise Bernstein polynomial (22), thanks to 

the differential flatness of quadrotor dynamics (23). More precisely, the 𝑚௧௛ segment of the trajectory of 

the agent 𝑖 is formulated as follows: 

𝐩௞
௜ (𝑡) = ෍  

௡

௟ୀ଴

𝐜௞,௠,௟
௜ 𝑏௟,௡ ൬

𝑡 − 𝑇௞ା௠ିଵ

Δ𝑡
൰ , ∀𝑡 ∈ [𝑇௞ା௠ିଵ, 𝑇௞ା௠] 

where 𝑘 is the current replanning step, 𝐩௞
௜ (𝑡) is the trajectory of the agent 𝑖, 𝐜௞,௠,௟

௜ ∈ ℝଶ is the control 

point, 𝑛 > 4 is the degree of the polynomial, 𝑏௟,௡ is Bernstein basis polynomial, 𝑇଴ is the mission start 

time, 𝑇௞  =  𝑇଴  +  𝑘Δ𝑡, and Δ𝑡 is the duration of the trajectory segment. 

 

We define that the agent 𝑖 is safe from a collision if the following conditions hold: 

∥∥𝐩௞
௜ (𝑡) − 𝐩௞

௝
(𝑡)∥∥ ≥ 2𝑟, ∀𝑡, 𝑗 ∈ ℐ ∖ {𝑖}

൫𝐩௞
௜ (𝑡) ⊕ 𝒞 ௜,௢൯ ∩ 𝒪 = ∅, ∀𝑡

𝒞 ௜,௢ = {𝐱 ∈ ℝଶ ∣∥ 𝐱 ∥< 𝑟}

 

where ⊕ is the Minkowski sum, 𝒞௜,௢ is the obstacle collision model, 𝒪 is the space occupied by the 

obstacles, and ∥⋅∥ is the Euclidean norm. 

 

We model the dynamical limit of the agent as follows: 

∥∥𝐯௜(𝑡)∥∥ஶ
≤ 𝑣୫ୟ୶, ∀𝑡

∥∥𝐚௜(𝑡)∥∥ஶ
≤ 𝑎୫ୟ୶, ∀𝑡

 

where 𝐯௜(𝑡) and 𝐚௜(𝑡) are the velocity and acceleration of the agent 𝑖, respectively, and 𝑣୫ୟ୶ and 𝑎୫ୟ୶ 

are the agent's maximum velocity and acceleration, respectively. 

 

Method 

The proposed algorithm consists of the communication phase and trajectory generation phase. During 

the communication phase, each agent configures an ad-hoc network between the agents within the 
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communication range. After network configuration, we conduct a grid-based multi-agent path planning 

(MAPP) algorithm to determine the waypoint of the agent. Then, the agent shares the previously planned 

trajectory and subgoal with the connected group. In the trajectory generation phase, we generate initial 

trajectories using the previously planned trajectories. The initial trajectories are utilized to construct 

feasible collision constraints. Next, we search for the subgoal that does not cause deadlock. Finally, 

we conduct trajectory optimization and execute it. We repeat the above process until all agents reach 

the desired goal. 

 

Decentralized Multi-agent Path Planning 

We introduce a decentralized MAPP to plan the waypoint, which provides guidance on deadlock 

resolution. For every replanning step, each agent configures the ad-hoc network between agents within 

the communication range, and one agent among the connected group is selected as a local coordinator. 

The local coordinator collects the subgoals, waypoints, and desired goals of the agents in the 

connected group. Then, the coordinator plans collision-free discrete paths using the MAPP algorithm 

on the grid space 𝐺, where the start points of MAPP are the previous waypoints 𝐰௞ିଵ
௜∈𝒩೔

, and the goal 

points are the desired goals. If it is the first step of the planning, we set the start point as 𝐬௜ instead. 

In this work, we adopt Priority Inheritance with Backtracking (PIBT) (24) for MAPP algortihm because it is 

a scalable algorithm that guarantees reachability, which ensures that all agents can reach the desired 

goal within a finite time. Next, the coordinator updates the agent's waypoint 𝐰௞
௜  to the second waypoint 

of the discrete path (the point one step after the start point) if the following two conditions are satisfied. 

First, the subgoal and waypoint at the previous step must be equal. Second, the distance between the 

updated waypoint and the endpoints of the previous trajectory's segments must be shorter than 𝑟௖/2. 

Otherwise, we reuse the previous waypoint as the current waypoint. Lastly, we check whether the 

waypoints are duplicated in the connected group. If there are the same ones, we restore one of them 

to the previous waypoint. We repeat this process until there is no duplicated waypoint.  

 

Initial Trajectory Planning 

As in our previous work (7), we utilize an initial trajectory to construct feasible collision constraints. We 

plan the initial trajectory using the previously planned trajectories, or the current position if it is the first 

step of the planning: 

𝐩̂௞
௜ (𝑡) = ቐ

𝐬௜ 𝑘 = 0, 𝑡 ∈ [𝑇଴, 𝑇ெ]

𝐩௞ିଵ
௜ (𝑡) 𝑘 > 0, 𝑡 ∈ [𝑇௞ , 𝑇௞ାெିଵ]

𝐩௞ିଵ
௜ (𝑇௞ାெିଵ) 𝑘 > 0, 𝑡 ∈ [𝑇௞ାெିଵ, 𝑇௞ାெ]

 

where 𝐩̂௞
௜ (𝑡) is the initial trajectory at the replanning step 𝑘. The control point of the initial trajectory is 

represented as follows: 

𝐜̂௞,௠,௟
௜ = ቐ

𝐬௜ 𝑘 = 0
𝐜௞ିଵ,௠ାଵ,௟

௜ 𝑘 > 0, 𝑚 < 𝑀

𝐜௞ିଵ,ெ,௡
௜ 𝑘 > 0, 𝑚 = 𝑀

 

where 𝐜̂௞,௠,௟
௜  is the control point of the initial trajectory. 

 

Collision Constraints Construction 

In our previous work (7), we utilized a safe flight corridor (SFC) and linear safe corridor (LSC) for 

collision avoidance. However, these constraints may cause deadlock if the agent is blocked by the 

constraints before reaching the waypoint. For this reason, we modify the collision constraints so that 

the agent can proceed to the waypoint. 
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For obstacle avoidance, we construct the SFC as follows: 

𝒮௞,௠
௜ =

⎩
⎪
⎨

⎪
⎧

𝒮({𝐬௜}) 𝑘 = 0

𝒮௞ିଵ,௠ାଵ
௜ 𝑘 > 0, 𝑚 < 𝑀

𝒮൫൛𝐜̂௞,ெ,௡
௜ , 𝐠௞ିଵ

௜ , 𝐰௞
௜ ൟ൯ቁ 𝑘 > 0, 𝑚 = 𝑀, (A)

𝒮൫൛𝐜̂௞,ெ,௡
௜ , 𝐠௞ିଵ

௜ ൟ൯  else 

 

(A): ൫Conv ൫൛𝐜̂௞,ெ,௡
௜ , 𝐠௞ିଵ

௜ , 𝐰௞
௜ ൟ൯ ⊕ 𝒞 ௜,௢൯ ∩ 𝒪 = ∅ 

where 𝒮௞,௠
௜  is the SFC for 𝑚௧௛ trajectory segment, 𝒮(𝒫) is a convex set that includes the point set 𝒫 

and satisfies (𝒮(𝒫) ⊕ 𝒞 ௜,௢) ∩ 𝒪 = ∅, and Conv (⋅) is the convex hull operator that returns a convex hull 

of input set. We generate the SFC using the axis-search method (9). 

 

For inter-agent avoidance, if it is the first step of the planning or 𝑚 < 𝑀, we construct the LSC using 

the same approach as our previous work (7): 

ℒ௞,௠,௟
௜,௝

= ൛𝐱 ∈ ℝଶ ∣ ൫𝐱 − 𝐜̂௞,௠,௟
௝

൯ ⋅ 𝐧௠
௜,௝

− 𝑑௠,௟
௜,௝

≥ 0ൟ

𝑑௠,௟
௜,௝

= 𝑟 +
1

2
൫𝐜̂௞,௠,௟

௜ − 𝐜̂௞,௠,௟
௝

൯ ⋅ 𝐧௠
௜,௝

 

where ℒ௞,௠,௟
௜,௝

 is the LSC between the agent 𝑖 and 𝑗, 𝐧௠
௜,௝

 is the normal vector such that 𝐧௠
௜,௝

= −𝐧௠
௝,௜

, 𝑑௠,௟
௜,௝

 

is the safety margin. The detailed LSC construction can be found in our previous work (7). If it is not the 

first step of the planning and 𝑚 = 𝑀, then we generate the LSC as follows: 

ℒ௞,ெ,௟
௜,௝

= ൛𝐱 ∈ ℝଶ ∣ ൫𝐱 − 𝐩௖௟௦,௜
௝

൯ ⋅ 𝐧ெ
௜,௝

− 𝑑ெ,௟
௜,௝

≥ 0ൟ

𝐧ெ
௜,௝

=
𝐩௖௟௦,௝

௜ − 𝐩௖௟௦,௜
௝

∥∥𝐩௖௟௦,௝
௜ − 𝐩௖௟௦,௜

௝
∥∥

𝑑ெ,௟
௜,௝

= 𝑟 +
1

2 ∥∥𝐩௖௟௦,௝
௜ − 𝐩௖௟௦,௜

௝
∥∥

 

where 𝐩௖௟௦,௝
௜ ∈ ൻ𝐜̂௞,ெ,௡

௜ , 𝐠௞ିଵ
௜ ൿ and 𝐩௖௟௦,௜

௝
∈ ൻ𝐜̂௞,ெ,௡

௝
, 𝐠௞ିଵ

௝
ൿ  are the closest points between ൻ𝐜̂௞,ெ,௡

௜ , 𝐠௞ିଵ
௜ ൿ  and 

ൻ𝐜̂௞,ெ,௡
ఫ̂

, 𝐠௞ିଵ
௝

ൿ, respectively, and ⟨𝐚, 𝐛⟩ is the line segment between two points 𝐚 and 𝐛. 

Fig. 2 shows the collision constraints for the last trajectory segment. We can observe that the feasible 

region of the agent always contains ൻ𝐠௞ିଵ
௜ , 𝐜̂௞,ெ,௡

௜ ൿ. Thus, each agent can secure the free space to 

proceed to the subgoal 𝐠௞ିଵ
௜ , which will converge to the waypoint 𝐰௞

௜ . 
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Subgoal Optimization 

Suppose that the waypoint from MAPP does not satisfy the collision constraints. If we directly set this 

waypoint as the target point, this may lead to deadlock since the agent cannot reach the waypoint by 

the constraints. Therefore, we designate the point that is closest to the waypoint and satisfies the 

collision constraints as the subgoal. More precisely, we determine the subgoal by solving the following 

linear programming (LP) problem: 

minimize
𝐠ೖ

೔
∥∥𝐠௞

௜ − 𝐰௞
௜ ∥∥

 subject to 𝐠௞
௜ ∈ ൻ𝐬௜ , 𝐰௞

௜ ൿ  if 𝑘 = 0

𝐠௞
௜ ∈ ൻ𝐠௞ିଵ

௜ , 𝐰௞
௜ ൿ  if 𝑘 > 0

𝐠௞
௜ ∈ 𝒮௞,ெ

௜

𝐠௞
௜ ∈ ℒ௞,ெ,௡

௜,௝
∀𝑗 ∈ 𝒩௜

 

where 𝐠௞
௜  is the subgoal at the replanning step 𝑘. 

 

Trajectory Optimization 

We formulate the objective function to minimize both the distance to the current subgoal and the jerk 

of the trajectory as follows: 

𝐽err 
௜ = 𝑤err ∥∥𝐩௞

௜ (𝑇ெ) − 𝐠௞
௜ ∥∥

ଶ

𝐽der 
௜ = 𝑤ௗ௘௥ න  

்ಾ

బ்

 
∥∥
∥∥

𝑑ଷ

𝑑𝑡ଷ
𝐩௞

௜ (𝑡)
∥∥
∥∥

ଶ

𝑑𝑡
 

where 𝑤௘௥௥ , 𝑤der > 0 are the weight coefficients. 

If we do not consider the communication range when generating the trajectory, the agent may collide 

with an agent outside the range. Also, if the distance between the agent and its waypoint is longer than 

half the communication range, an agent outside the range can assign the same waypoint. Hence, we 

add the following constraints to prevent the collision and duplicated waypoints between agents outside 

the range: 

Fig. 2. Collision constraints for the last trajectory segment. The squares are the 

waypoints, the triangles are the final points of the initial trajectories, and the circles 

are the previously planned subgoals. The gray box is the static obstacle, and the 

color-shaded region is the feasible region that satisfies the collision constraints. We 

generate the collision constraint for the last segment to include the line segment 

between the final point and the subgoal, which is depicted as the thick line. 
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∥∥𝐜௞,௠ା௛,௟
௜ − 𝐜௞,௠,଴

௜
∥∥

ஶ
≤

𝑟௖

2
− 𝑟, ∀ℎ ≥ 0, 𝑚, 𝑙

∥∥𝐜௞,௠,௡
௜ − 𝐰௞

௜
∥∥

ஶ
≤

𝑟௖

2
, ∀𝑚

 

The trajectory must satisfy the initial condition to match the agent's current state, and we impose 

continuity constraints to make the trajectory continuous up to the acceleration. We add the final stop 

condition for the feasibility of the optimization problem (i.e., 𝐜௞,ெ,௡
௜ = 𝐜௞,ெ,௡ିଵ

௜ = 𝐜௞,ெ,௡ିଶ
௜ . The dynamical 

limit can be represented to affine inequality using the convex hull property of the Bernstein polynomial. 

We can reformulate the above constraints as the following affine constraints: 

𝐴௘௤𝐜௞
௜  = 𝐛௘௤

𝐴ௗ௬௡𝐜௞
௜  ≤ 𝐛ௗ௬௡

 

where 𝐜௞
௜  is the vector that concatenates the control points of 𝐩௞

௜ (𝑡) . We conduct the trajectory 

optimization by solving the following quadratic programming (QP) problem: 

minimize
𝐜ೖ

೔
𝐽err 

௜ + 𝐽ௗ௘௥
௜

 subject to 𝐜௞,௠,௟
௜ ∈ 𝒮௞,௠

௜ ∀𝑚, 𝑙

𝐜௞,௠,௟
௜ ∈ ℒ௞,௠,௟

௜,௝
∀𝑗 ∈ 𝒩௜ , 𝑚, 𝑙

∥∥𝐜௞,௠ା௛,௟
௜ − 𝐜௞,௠,଴

௜
∥∥

ஶ
≤

𝑟௖

2
− 𝑟 ∀ℎ ≥ 0, 𝑚, 𝑙

∥∥𝐜௞,௠,௡
௜ − 𝐰௞

௜
∥∥

ஶ
≤

𝑟௖

2
∀𝑚

 

 

Theoretical Guarantee 

We present the theoretical guarantee of the proposed algorithm. We omit many details in the proof 

due to the page limit, and the omitted part can be found in extended version (25). 

Theorem 1. (Collision avoidance) The proposed algorithm does not cause inter-agent collision or 

collision between agent and obstacle. 

Proof. The agent does not collide with obstacles since 𝐩௞
௜ (𝑡) ∈ 𝒮௞,௠

௜  by the convex hull property of 

Bernstein polynomial and ൫𝒮௞,௠
௜ ⊕ 𝒞 ௜,௢൯ ∩ 𝒪 = ∅. For the agent 𝑗 ∈ 𝒩௜, we can prove that there is no 

collision between agents 𝑖 and 𝑗. For the agent 𝑗 ∉ 𝒩௜ , then we can show that ∥∥𝐩௞
௜ (𝑡) − 𝐩௞

௝
(𝑡)∥∥ ≥

∥∥𝐩௞
௜ (𝑡) − 𝐩௞

௝
(𝑡)∥∥ஶ

≥ 2𝑟. Thus, the proposed algorithm does not cause collision. 

Theorem 2. (Feasibility of optimization problem) If the replanning period is same as the segment duration 

Δ𝑡, the solution of the optimization problem always exists for every replanning step. 

Proof. Similar to the proof of Theorem 1 in the previous work (7), we can prove this by showing that the 

initial trajectory 𝐩̂௞
௜ (𝑡) always satisfies the constraints of the optimization problem for every replanning 

step. 

Theorem 3. (Deadlock resolution) If the MAPP does not cause deadlock, then the proposed algorithm 

does not cause deadlock. 

Proof. We can show that agent 𝑖 does not occur deadlock if: 
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𝐜௞,ெ,௡
௜  ≠ 𝐠௞

௜

𝐠௞
௜ ∈ 𝒮௞,ெ

௜ ,  𝐠௞
௜ ∈ ℒ௞,ெ,௡

௜,∀௝𝒩೔

, ∥∥𝐠௞
௜ − 𝐰௞

௜ ∥∥ஶ
≤

𝑟௖

2

 

Here, 𝐠௞
௜  always satisfies the above conditions due to the assumption that 𝑟௖ > 2𝑑. Therefore, deadlock 

occurs if and only if there exists 𝑘଴ such that: 

𝐜௞,ெ,௡
௜ = 𝐠௞

௜ = 𝐠௞బ

௜ , ∀𝑖, 𝑘 ≥ 𝑘଴

𝐠௞బ

௜ ≠ 𝐰௞బ

௜ , ∃𝑖, ∀𝑘 ≥ 𝑘଴

 

Assume that the agent 𝑖 satisfies the above conditions. Then, by the KKT conditions (26), there exists 

the agent 𝑗 such that: 

∥∥𝐠௞
௜ − 𝐠௞

௝
∥∥ = 2𝑟, ∀𝑘 ≥ 𝑘଴

൫𝐠௞
௝

− 𝐠௞
௜ ൯

்
൫𝐰௞

௜ − 𝐠௞
௜ ൯ > 0, ∀𝑘 ≥ 𝑘଴

 

Let us define the agent 𝑗 that satisfies the above conditions to a blocking agent of the agent 𝑖. If 

𝑑 ≤ 2√2𝑟, then there exists a case where all agents are blocked by other agents. Fig. 3a illustrates a 

case where the adjacent agent located in the counterclockwise direction becomes the blocking agent. 

(i.e., agents 1, 2, 3, 4 are the blocking agents of agents 4,1,2,3, respectively). However, if we set the 

grid size as 𝑑 > 2√2𝑟, there is at least one agent that does not have the blocking agent due to the large 

grid size. Fig. 3b depicts the example when 𝑑 > 2√2𝑟, and we can observe that agent 1 is not the 

blocking agent of agent 4. Thus, the proposed algorithm does not cause deadlock. 

 

 

 

Fig. 3. Illustrations for the proof of Theorem 3. The squares are the waypoint, the 

triangles are the final points of the initial trajectories, and the circles are the subgoals 

planned at the current step. The color-shaded region is the feasible region for each 

agent that satisfies the collision constraints. 

Fig. 3. Illustrations for the proof of Theorem 3. The squares are the waypoint, the 

triangles are the final points of the initial trajectories, and the circles are the subgoals 

planned at the current step. The color-shaded region is the feasible region for each 

agent that satisfies the collision constraints. 

(a) 𝒅 ≤ 𝟐√𝟐𝒓 (b) 𝒅 ≤ 𝟐√𝟐𝒓 
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Evaluation 

We compared the following algorithms to verify the performance of the proposed algorithm: 

 LSC-PB (LSC with priority-based goal planning (7)) 

 LSC-DR (LSC with deadlock resolution, proposed) 

We modeled the agent with radius 𝑟 = 0.15 m , maximum velocity 𝑣୫ୟ୶ = 1.0 m/s , maximum 

acceleration 𝑎୫ୟ୶ = 2.0 m/sଶ based on the experimental result with Crazyflie 2.1. To represent the 

trajectory, we set the degree of polynomials 𝑛 = 5, the number of segments 𝑀 = 10, and the segment 

time Δ𝑡 = 0.2 s. Therefore, the total planning horizon is 2 s. We assigned the replanning period to be 

Δ𝑡 = 0.2 s to satisfy the assumption in Thm. 2, so the trajectories are updated with the rate of 5 Hz at 

the same time. For decentralized MAPP, we implemented PIBT based on the source code (27), and we 

set the grid size 𝑑 = 0.5 m to fulfill the assumption that 𝑑 > 2√2𝑟. We used the Octomap library (28) to 

represent the obstacles, and we utilized randomized Prim's algorithm (29) to generate mazes. We set 

𝑤௘௥௥ = 1, 𝑤ௗ௘௥ = 0.01 as the parameters of the objective function, and we used the CPLEX solver (30) for 

subgoal and trajectory optimization. The simulation was executed on a laptop with Intel Core i7-

9750H@2.60GHz CPU and 32G RAM. 

 

Simulation 

We conducted the comparison in the following obstacle environments: 

(i) Random forest. We deploy 40 static obstacles in a random position and ten agents in a circle with 

4 m radius. The goal point of the agent is at the antipodal point of the start point, as shown in Fig. 4. 

(ii) Sparse maze. It consists of 6 × 6 cells, and each cell size is 1.0 m × 1.0 m, thus three agents can 

pass the corridor simultaneously. The maze has two entrances, and there are five agents at each 

entrance. We assigned each agent's goal point to the entrance on the other side of the maze, as 

depicted in Fig. 5. 

(iii) Dense maze. It consists of 9 × 9 cells, and each cell size is 0.5 m × 0.5 m, thus only one agent 

can pass the corridor. We assigned the mission similar to the sparse maze, as illustrated in Fig. 6. 

We judge that the mission failed when a collision occurred or when the agent failed to reach the goal 

within 60 s. For each map, we ran 30 trials changing the obstacle's position. 

 

 

Fig. 4. Snapshot of trajectory generation in the random forest by the proposed method. 
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Table 1 and Fig. 4,5,6 describe the simulation results in obstacle environments. LSC-PB shows the 

perfect success rate in sparse environments and does not cause a collision in all cases. However, LSC-

PB fails to reach the goal in the dense maze because it cannot solve a deadlock when there is no space 

to yield to a higher priority agent. On the other hand, our algorithm achieves the perfect success rate 

for all types of environments regardless of the communication range. It validates that the proposed 

algorithm can solve a deadlock even in a dense maze-like environment without a centralized 

coordinator. 

The proposed method shows a 27.6% shorter flight time and a 7.4% shorter flight distance compared 

to LSC-PB when 𝑟௖ = ∞. It is because LSC-PB performs a deadlock resolution only when the distance 

between the agents is close enough. Conversely, the proposed algorithm utilizes the final trajectory 

point, not the current position, for deadlock resolution. Therefore, the agent does not need to wait until 

other agents clump together. 

Fig. 5. Snapshot of trajectory generation in the sparse maze by the proposed method.  

Fig. 6. Snapshot of trajectory generation in the dense maze by the proposed method.  
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Table 1. Comparison with previous work (7). The bold number indicates the best result (sr: success 

rate (%), 𝑻𝒇 : flight time (s), 𝑳: flight distance per agent (𝐦), 𝑻𝒄: computation time (𝐦𝐬)). 

Environment Method 𝑠𝑟 𝑇௙ 𝐿 𝑇௖ 

Random 

forest 

LSC-PB (7) (𝑟௖ = ∞) 100 25.7 11.8 8.15 

LSC-DR (𝑟௖ = 2 m) 100 28.8 11.7 𝟕. 𝟖𝟔 

LSC-DR (𝑟௖ = 3 m) 100 20.7 11.3 8.01 

LSC-DR (𝑟௖ = 4 m) 100 19.9 11.3 8.23 

 LSC-DR (𝑟௖ = ∞) 100 𝟏𝟗. 𝟏 𝟏𝟏. 𝟏 8.16 

Sparse 

maze 

LSC-PB (7) (𝑟௖ = ∞) 100 33.7 13.9 9.05 

LSC-DR (𝑟௖ = 2 m) 100 34.4 13.5 𝟖. 𝟓𝟏 

LSC-DR (𝑟௖ = 3 m) 100 27.1 13.1 8.62 

LSC-DR (𝑟௖ = 4 m) 100 𝟐𝟑. 𝟕 𝟏𝟐. 𝟔 8.66 

LSC-DR (𝑟௖ = ∞) 100 23.9 12.7 8.67 

Dense  

maze 

LSC-PB (7) (𝑟௖ = ∞) 0 − − − 

LSC-DR (𝑟௖ = 2 m) 100 61.4 𝟏𝟔. 𝟓 7.30 

LSC-DR (𝑟௖ = 3 m) 100 51.0 16.6 7.44 

LSC-DR (𝑟௖ = 4 m) 100 50.9 17.1 7.31 

LSC-DR (𝑟௖ = ∞) 100 𝟒𝟖. 𝟑 16.7 𝟕. 𝟐𝟒 
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Hardware demonstration 

Fig. 1 shows the hardware demonstration with ten Crazyflie 2.1 quadrotors in the dense maze. We set 

the communication range as 2 m, and we used the Crazyswarm (31) to broadcast the trajectory to the 

agents. We verified that there was no collision or deadlock during the entire flight. 

 

Conclusions 

We presented the online decentralized MATP algorithm that guarantees to generate a safe, deadlock-

free in a cluttered environment. We utilized the decentralized MAPP for deadlock resolution and generate 

the constraints so that the agent could reach the waypoint without deadlock. We proved that the 

proposed algorithm guarantees the feasibility of the optimization problem, collision avoidance, and 

deadlock-free for every replanning step. We verified that the proposed method does not cause collision 

or deadlock, regardless of the size of the free space or communication range. Moreover, the proposed 

algorithm has a 27.6% shorter flight time and a 7.4% shorter flight distance than our previous work. In 

future work, we plan to extend this algorithm to three-dimensional spaces, and we will try other MAPP 

algorithms to improve the performance further. 
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